A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.

نویسندگان

  • Gabriel Schaaf
  • Adam Schikora
  • Jennifer Häberle
  • Grégory Vert
  • Uwe Ludewig
  • Jean-François Briat
  • Catherine Curie
  • Nicolaus von Wirén
چکیده

Although Arabidopsis thaliana does not produce phytosiderophores (PS) under Fe deficiency, it contains eight homologs of the metal-PS/metal-nicotianamine (NA) transporter ZmYS1 from maize. This study aimed to investigate whether one of the closest Arabidopsis homologs to ZmYS1, AtYSL2, is involved in metal-chelate transport. Northern analysis revealed high expression levels of AtYSL2 in Fe-sufficient or Fe-resupplied roots, while under Fe deficiency transcript levels decreased. Quantitative real-time polymerase chain reaction (PCR) and analysis of transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene further allowed the detection of down-regulated AtYSL2 gene expression under Zn and Fe deficiency. In contrast to ZmYS1, AtYSL2 did not mediate metal-PS or metal-NA transport in yeast mutants defective in Cu or Fe uptake, nor did AtYSL2 mediate Fe(II)-NA-, Fe(III)-NA- or Ni(II)-NA-inducible currents when assayed by two-electrode voltage clamp in Xenopus oocytes. Moreover, truncation of the N-terminus to remove putative phosphorylation sites that might trigger autoinhibition did not confer functionality to AtYSL2. A direct growth comparison of yeast cells transformed with AtYSL2 in two different yeast expression vectors showed that transformation with empty pFL61 repressed growth even under non-limiting Fe supply. We therefore conclude that the yeast complementation assay previously employed does not allow the identification of AtYSL2 as an Fe-NA transporter. Transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene showed expression in root endodermis and pericycle cells facing the meta-xylem tubes. Taken together, our investigations support an involvement of AtYSL2 in Fe and Zn homeostasis, although functionality or substrate specificity are likely to differ between AtYSL2 and ZmYS1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.

Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, ...

متن کامل

Characterizing the Crucial Components of Iron Homeostasis in the Maize Mutants ys1 and ys3

To acquire iron (Fe), graminaceous plants secrete mugineic acid family phytosiderophores through the phytosiderophore efflux transporter TOM1 and take up Fe in the form of Fe(III)-phytosiderophore complexes. Yellow stripe 1 (ys1) and ys3 are recessive mutants of maize (Zea mays L.) that show typical symptoms of Fe deficiency, i.e., interveinal chlorosis of the leaves. The ys1 mutant is defectiv...

متن کامل

Natural Variation at the FRD3 MATE Transporter Locus Reveals Cross-Talk between Fe Homeostasis and Zn Tolerance in Arabidopsis thaliana

Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the B...

متن کامل

A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik.

A mutation in the Arabidopsis gene STARIK leads to dwarfism and chlorosis of plants with an altered morphology of leaf and cell nuclei. We show that the STARIK gene encodes the mitochondrial ABC transporter Sta1 that belongs to a subfamily of Arabidopsis half-ABC transporters. The severity of the starik phenotype is suppressed by the ectopic expression of the STA2 homolog; thus, Sta1 function i...

متن کامل

Functional analysis of the rice vacuolar zinc transporter OsMTP1

Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2005